




Table of Contents




	Info

	Dedication

	Chapter 0: Hello World

	Prereqs

	System Setup

	Handy Resources

	Hello World

	Building and Running

	Conclusion

	Exercises





	Chapter 1: Data

	Arrays

	Exercises





	Chapter 2: Environment Calls

	Examples

	Exercises





	Chapter 3: Branches and Logic

	Practice

	Conclusion

	Exercises





	Chapter 4: Loops

	Looping Through Arrays

	Conclusion

	Exercises





	Chapter 5: Functions and the RISC-V Calling Convention

	Functions

	The Convention

	Conclusion

	Exercises





	Chapter 6: Floating Point Types

	Floating Point Registers and Instructions

	Practice

	Getting Floating Point Literals

	Branching

	Functions

	Conclusion

	Exercises





	Chapter 7: Tips and Tricks

	Formatting

	Misc. General Tips

	Constants

	Macros

	Switch-Case Statements

	Command Line Arguments

	No Pseudoinstructions Allowed

	Exercises





	Appendix A: Venus

	Versions and History

	Data section

	Environment Calls

	Constants

	Conclusion





	References and Useful Links

	Supporters

	Corporate













Info


        Copyright © 2021-2024 Robert Winkler

This book is licensed under the Creative Commons BY-NC-SA 4.0
which summarized means:

You are free to:



	
Share — copy and redistribute the material in any medium or format


	
Adapt — remix, transform, and build upon the material


	
The licensor cannot revoke these freedoms as long as you follow the license terms.






Under the following terms:



	
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


	
NonCommercial — You may not use the material for commercial purposes.


	
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.


	
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.






This book is available online in
HTML,
PDF, and
EPUB form.

You can support the book and purchase the chapter exercise solutions
from my store or
Leanpub.

The repo for the book, where you can get the code referenced and report
any errors (submit an issue or even a pull request) is
here.  The code is MIT licensed.

If you’re interested in contacting me regarding RISC-V tutoring or any other
business request related to the book, you can reach me at books@robertwinkler.com.





Dedication


        This book is dedicated to all its supporters and all the students
I’ve helped with RISC-V over the years who inspired me to create it.

Thank you.

An extra thank you goes to the corporate level sponsors below:











	

[image: Cover Logo]




	

[image: My Gravatar]




	 















Chapter 0: Hello World


        In which we lay the groundwork for the rest of the book…


Prereqs

          While someone with no programming experience could probably learn RISC-V from this
book, it is definitely preferable to have at least some experience in a higher
level imperative programming language. I say imperative, because programming
in assembly is the antithesis of functional programming; everything is about
state, with each line changing the state of the CPU and sometimes memory. Given
that, experience in functional languages like Lisp, Scheme etc. are less helpful
than experience in C/C++, Java, Python, Javascript etc.

Of all of the latter, C is the best, with C++ being a close second because at least
all of C exists in C++. There are many reasons C is the best prior experience when
learning assembly (any assembly, not just RISC-V), including the following:



	
pointers, concepts and symmetry of "address of" and "dereference" operators


	
pointer/array syntax equivalence


	
stack allocation as the default


	
manual memory management, no garbage collector


	
global data


	
rough equivalence in structure of a C program and an assembly program (vs. say Java)


	
pass by value






There is some overlap between those and there are probably more, but you can see that
most other languages that are commonly taught as first languages are missing most, if
not all of those things.

Even C++, which technically has all of them being a superset of C,
is usually taught in a way that mostly ignores all of those things.  They teach
C++ as if it’s Java, never teaching the fundamentals. In any case this
is getting into my problems with CS pedagogy of the last 20 years based on my
experience as a CS major myself ('12) and as a programming tutor helping college
students across the country since 2016, and I should save it for a proper
essay/rant sometime.

Long story short, I use C code and C syntax to help explain and teach RISC-V.  I’ll
try to provide enough explanation regardless of past experience as best I can.



System Setup

          As I tell all of my tutoring students, if you’re majoring in CS or anything related
I highly recommend you use Linux. It’s easier in every way to do dev work
on Linux vs Windows or Mac.  Many assignments require it, which often necessitates
using a virtual machine (which is painful, especially on laptops) and/or ssh-ing
into a school Linux server, which is also less than ideal.  In general, you’ll have
to learn how to use the Unix terminal eventually and will probably use it to some
extent in your career so it also makes sense to get used to it asap.

That being said, Windows does now have WSL so you can get the full Ubuntu or Debian
or Fedora etc. terminal based system on Windows without having to setup a real
virtual machine (or dealing with the slowdown that would cause). I’ve even heard
that they’ll get support for Linux GUI programs soon.

MacOS on the other hand, is technically a Unix based system and you can use their
terminal and install virtually any program from there using Macports or Homebrew
or similar.

There are a few RISC-V simulators that I know of and have used:



	
RARS is a RISC-V port of MARS, a Java GUI based simulator with dozens of extra
environment calls, syntactic sugar and features like graphics, memory mapped I/O, etc.


	
Venus, a web based simulator used by Berkeley (also has a downloadable jar)


	
Ripes, a graphical processor simulator and assembly editor for bare bones assembly
programming






Of those three, RARS is by far the most full featured and user friendly for learning
since it forked from the venerable MARS MIPS simulator.  It is also the most
commonly used by students outside of Berkeley.  Given that, this book will focus
primarily on RARS, though most of it applies equally well to Venus.  Appendix A: Venus
covers the differences between RARS and Venus.

You can download/access both at the following links:



	
RARS


	
RARSM RARS iMproved; fork of RARS with fixes/features


	
ThaumicMekanism’s Venus
Get the jar here


	
CS 61C’s Venus
Get the jar here.








Handy Resources

          There are a few references that you should bookmark (or download) before you get started.
The first is the
RISC-V Greensheet.
It’s possible you already have a physical copy of this as it’s actually the tearout from the Patterson
and Hennessey textbook Computer Architecture and Design
that is commonly used in college courses.  Berkeley provides a similar
reference sheet
with the same information.

There is also a large format of the
greensheet.

The second thing is the list of
environment calls (aka ecalls,
system calls, syscalls) from the RARS wiki.

I recommend you download/bookmark both and keep them open while working because
you’ll be referencing them often to remind yourself which instructions and ecalls
you have available and how they work.



Hello World

          Let’s start with the classic hello world program, first in C, then in RISC-V, and go
over all the pieces in overview.  You can copy paste these into your editor of choice
(mine being neovim), or use the files in the associated repo to follow along.


        	1
2
3
4
5
6
7

	#include <stdio.h>

int main()
{
	printf("Hello World!\n");
	return 0;
}








It is pretty self explanatory.  You have to include stdio.h so you can use the
function printf (though in the real world I’d use puts here), the function main
is the start of any C/C++ program, which is a function that returns
an int.  We call printf to display the string "Hello World!\n" to the user and
then return 0 to exit.  Returning 0 indicates success and there were no errors.

You can compile and run it in a linux/unix terminal as shown below.  You
can substitute clang or another compiler for gcc if you want.


        $ gcc -o hello hello.c
$ ./hello
Hello World!


Now, the same program in RISC-V:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	.data
hello:   .asciz "Hello World!\n"

.text
main:
	li   a7, 4      # load immediate, a7 = 4 (4 is print string system call)
	la   a0, hello  # load address of string to print into a0
	ecall

	li   a7, 10     # exit ecall
	ecall








The .data section is where you declare global variables, which includes string
literals as in this case.  We’ll cover them in more detail later.

The .text section is where any code goes.  Here we declare a single label main:,
indicating the start of our main function.

We then put the number 4 in the a7 register to select the print string system
call.  The print string system call takes one argument, the address of the string
to print, in the a0 register.  We do that on the next line. On line 8, we call
the system call using the ecall instruction.

Finally we call the exit system call which takes no arguments and exits the program.

Again, we’ll cover system calls in a later chapter.  This is just an intro/overview
so don’t worry if some things aren’t completely clear.  This chapter is about getting
you up and running, not really about teaching anything specific yet.



Building and Running

          Now that we have our hello world RISC-V program, how do we run it?  Well the easiest
and quickest[1] way is of course to do it on the command line, which can be done like
this:


        $ java -jar ~/rars_latest.jar hello.s
RARS 1.5  Copyright 2003-2019 Pete Sanderson and Kenneth Vollmar

Hello World!

Program terminated by calling exit


The name of your RARS jar file may be different[2], so be sure to
use the correct name and path.  For myself, I keep the jar file in my home
directory so I can use tilde to access it no matter where I am.  You can also
copy it into your working directory (ie wherever you have your source code) so you
don’t have to specify a path at all.  There are lots of useful command line options
that you can use[3], some of which we’ll touch on later.

Running the jar directly on the command line works even in the Windows/DOS command
line though I’ve never done it and it’s probably not worth it.

Alternatively, you can start up RARS like a normal GUI application and
then load your source file.  RARS requires you to hit "assemble" and then "run".



Conclusion

          Well, there you have it, you have written and run your first RISC-V program.  Another
few chapters and you will have no trouble with almost anything you would want
to do in RISC-V, whether for a class, or on your own for fun.



Exercises

          You can support the book and purchase the chapter exercise solutions
from my store or
Leanpub.



	
Modify the hello world program to print something different, perhaps your name.


	
Run it with both RARS and Venus.










Starting up the RARS GUI (an old style Java app) is often annoyingly slow



Some schools/professors have their own versions with extra features and other improvements over the official releases



https://github.com/TheThirdOne/rars/wiki/Using-the-command-line









Chapter 1: Data


        In RISC-V, you can declare global variables in the .data section.

At a minimum, this is where you would declare/define any literal strings
your program will be printing, since virtually every program has
at least 1 or 2 of those.

When declaring something in the .data section, the format is

variable_name: .directive value(s)

where whitespace between the 3 is arbitrary.  The possible directives are listed
in the following table:




Table 1. RISC-V data types







	Directive
	Size
	C equivalent





	.byte

	1

	char




	.half

	2

	short




	.word

	4

	int, all pointer types




	.float

	4

	float




	.double

	8

	double




	.ascii

	NA

	char str[5] = "hello"; (no '\0')




	.asciz

	NA

	char str[] = "hello"; (includes the '\0')




	.string

	NA

	alias for .asciz




	.space

	NA

	typeless, unitinialized space, can be used for any type/array










As you can see it’s pretty straightforward, but there are a few more details
about actually using them so let’s move onto some examples.

Say you wanted to convert the following simple program to RISC-V:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	#include <stdio.h>

int main()
{
	char name[30];
	int age;
	printf("What's your name and age?\n");
	scanf("%s %d", name, &age);
	printf("Hello %s, nice to meet you!\n", name);
	return 0;
}








The first thing you have to remember when converting from a higher level language
to assembly (any assembly), is that what matters is whether it is functionally
the same, not whether everything is done in exactly the same way[4].
In this instance, that means realizing that your literal strings and your local
variables name and age become globals in RISC-V.


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	.data
age:         .word 0  # can be initialized to anything

ask_name:    .asciz "What's your name and age?\n"
hello_space: .asciz "Hello "
nice_meet:   .asciz ", nice to meet you!\n"

name:        .space 30

.text

# main goes here








As you can see in the example, we extract all the string literals and
the character array name and int age and declare them as globals.
One thing to note is the second printf.  Because it prints a variable, name,
using the conversion specifier, we break the literal into pieces around that.
Since there is no built-in printf function in RISC-V, you have to handle printing
variables yourself with the appropriate environment calls.


Arrays

          Obviously strings are special cases that can be handled with .ascii or .asciz
(or the alias .string) for literals, but for other types or user inputed strings
how do we do it?

The first way, which was demonstrated in the snippet above is to use .space
to declare an array of the necessary byte size.  Keep in mind that the size is
specified in bytes not elements, so it only matches for character arrays.  For
arrays of ints/words, floats, doubles etc. you’d have to multiply by the sizeof(type).

"But, .space only lets you declare uninitialized arrays, how do I do initialized ones?"

Actually, it appears .space initializes everything to 0 similar to global/static
data in C and C++, though I can’t find that documented anywhere.

Aside from that, there are two ways depending on whether you want to initialize
every element to the same value or not.

For different values, the syntax is an extension of declaring a single variable
of that type.  You specify all the values, comma separated.  This actually gives
you another way to declare a string or a character array, though I can’t really
think of a reason you’d want to.  You could declare a .byte array and list all
the characters individually.

However, if you want an array with all elements initialized to the same value
there is a more convenient option.  After the type you put the value you want,
a colon, and then the number of elements.  So a: .word 123 : 10 would
declare a 10 integer array with all elements set to 123.  Note, Venus does
not support this syntax.

Given what we just covered, this:


        	1
2
3
4
5

	int a[20];
double b[20];
int c[10] = { 9,8,7,6,5,4,3,2,1,0 };
int d[5] = { 42, 42, 42, 42, 42 };
char e[3] = { 'a', 'b', 'c' };








becomes


        	1
2
3
4
5
6

	.data
a:        .space 80
b:        .space 160
c:        .word 9,8,7,6,5,4,3,2,1,0
d:        .word 42 : 5
e:        .byte 'a', 'b', 'c'








For more examples of array declarations, see
array_decls.s.
You don’t have to understand the rest of the code, just that it prints out each of the arrays.



Exercises

          You can support the book and purchase the chapter exercise solutions
from my store or
Leanpub.



	
Create a RISC-V data section that declares variables equivalent to the following.  This will not be a runnable program without a main.

        	1
2
3
4
5
6

		float a;
	float b = 2.71;
	int myarray[10] = { 9, 8, 7, 6, 5, 4, 3, 2, 1 };
	short array2[10];

	char riscv_str[] = "RISC-V assembly is awesome!";










	
How would you declare an array of 500 points?  The point structure is tightly
packed and defined like this:

        	1
2
3
4
5

	struct point {
	float x;
	float y;
	float z;
};


















Obviously compilers have to follow stricter rules, but for the purposes of learning and actually using assembly directly, there’s no reason to make your life harder than necessary.









Chapter 2: Environment Calls


        We mentioned environment calls (aka ecalls, though they’re also called system
calls or syscalls in other languages like MIPS) in chapter 0 when we were going
over our "Hello World" program, but what exactly are they?

Essentially, they are the built in functions of an operating system; in this case,
the simple operating system of the RARS simulator.  They provide access to all the
fundamental features, like input and output to/from both the console and files,
allocating memory, and exiting.  Those are the basics but RARS supports many more,
for things ranging from playing MIDI sounds, to getting a random number, to creating
GUI dialogs.[5]




Table 2. Basic RARS supported ecalls








	Name
	a7
	Arguments
	Result





	print integer

	1

	a0 = integer to print

	



	print float

	2

	fa0 = float to print

	



	print double

	3

	fa0 = double to print

	



	print string

	4

	a0 = address of string

	



	read integer

	5

	
	a0 = integer read




	read float

	6

	
	fa0 = float read




	read double

	7

	
	fa0 = double read




	read string

	8

	a0 = address of input buffer

a1 = buffer size

	works like C’s fgets




	sbrk

	9

	a0 = size in bytes to allocate

	a0 = address of allocated memory (sbrk is basically malloc but there is no free)




	exit

	10

	
	program terminates




	print character

	11

	a0 = character to print (ascii value)

	



	read character

	12

	
	a0 = character read




	open file

	1024

	a0 = address of filename

$a1 = flags

	a0 = file descriptor (negative if error)




	lseek

	62

	a0 = file descriptor, a1 = offset from base,

a2 = beginning(0), current(1), or end of the file(2)

	a0 = selected position from beginning of the file or -1 if error




	read from file

	63

	a0 = file descriptor

a1 = address of input buffer

a2 = max characters to read

	a0 = number of characters read, -1 if error




	write to file

	64

	a0 = file descriptor

a1 = address of output buffer

a2 = number of characters to write

	a0 = number of characters written




	close file

	57

	a0 = file descriptor

	



	exit2

	93

	a0 = termination result

	program terminates, returning number in a0 (only meaningful when run in the terminal, ignored in GUI)










As you can see, they really only cover the basics.  You can read or write the
different types, do file I/O using calls identical to POSIX functions
(open, read, write, close; see man pages), allocate memory, and exit.
Even so, they’re sufficient to build anything you want.

So, what does that table mean?  How do these actually work?

The process is:



	
Put the number for the ecall you want in a7


	
Fill in the appropriate arguments, if any


	
Execute the ecall with ecall







        	1
2
3

		li    a7, 1   # 1 is print integer
	li    a0, 42  # takes 1 arg in a0, the number to print
	ecall         # actually execute ecall








You can think of the above as print_integer(42);.  Let’s look at an actual
program that uses a few more ecalls next.


Examples

          
        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	#include <stdio.h>

int main()
{
	int age;
	int height;
	char name[50];
	printf("What's your name? ");
	fgets(name, 50, stdin);

	printf("Hello %s", name);

	printf("How old are you? ");
	scanf("%d", &age);

	printf("Enter your height in inches: ");
	scanf("%d", &height);

	printf("Your age + height = %d\n", age + height);

	return 0;
}








I’m using fgets() instead of scanf("%s", name) because fgets works the same as the
read string ecall (8).


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

	.data

name:     .space 50

nameprompt:  .asciz "What's your name? "
hello_space: .asciz "Hello "
how_old:     .asciz "How old are you? "
ask_height:  .asciz "Enter your height in inches: "
ageplusheight: .asciz "Your age + height = "


.text
main:
	li    a7, 4      # print string
	la    a0, nameprompt  # load address of string to print into a7
	ecall

	li    a7, 8      # read string
	la    a0, name
	li    a1, 50
	ecall

	li    a7, 4
	la    a0, hello_space
	ecall

	la    a0, name  # note 4 is still in a7
	ecall

	# don't print a newline here because
	# one will be part of name unless they typed >48 characters

	li    a7, 4
	la    a0, how_old
	ecall

	li    a7, 5   # read integer
	ecall
	mv    t0, a0  # save age in t0

	li    a7, 4
	la    a0, ask_height
	ecall

	li    a7, 5   # read integer
	ecall
	add   t0, t0, a0 # t0 += height

	li    a7, 4
	la    a0, ageplusheight
	ecall

	li    a7, 1  # print int
	mv    a0, t0  # a0 = age + height
	ecall

	# print newline
	li    a7, 11   # print char
	li    a0, 10   # ascii value of '\n'
	ecall

	li    a7, 10     # exit ecall
	ecall








There a few things to note from the example.

We don’t declare global variables for age or height.  We could, but there’s no reason
to since we need them in registers to perform the addition anyway.  Instead, we
copy/save age to t0 so we can use a0 for 2 more ecalls,
then add height to t0.

This is generally how it works.  Use registers for local variables unless
required to do otherwise.  We’ll cover more about
register use when we cover the RISC-V calling convention.

Another thing is when we print their name, we don’t put 4 in a7 again because it
is still/already 4 from the lines above.

Lastly, many people will declare a string "\n" and use print string to print a newline,
but it’s easier to use the print char ecall as we do right before exiting.



Exercises

          You can support the book and purchase the chapter exercise solutions
from my store or
Leanpub.



	
Convert the following C code to RISC-V

        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	#include <stdio.h>

int main()
{
	float price;
	double golden = 1.618;
	int ret;

	printf("Enter what the price of gas was last time you filled up: ");
	scanf("%f", &price);

	printf("%f is too expensive!\n", price);

	printf("The golden ratio is roughly %f\n", golden);


	printf("Enter an integer for the program to return: "
	scanf("%d", &ret);
	return ret;
}










	
Write a program that asks the user for their name, reads it in, and then
prints "Hello [user’s name]!"










https://github.com/TheThirdOne/rars/wiki/Environment-Calls









Chapter 3: Branches and Logic


        We can’t go much further in our RISC-V programming journey without covering branching.
Almost every non-trivial program requires some logic, even if it’s only a few if or
if-else statements.  In other words, almost every program requires branching, a way
to do a instead of b, or to do a only if certain conditions are met.

You already know how to do this in higher level languages, the aforementioned if
statement.  In assembly it’s more complicated.  Your only tool is the ability
to jump to a label on another line based on the result of various comparisons.  The
relevant instructions are listed in the following table:




Table 3. RISC-V branching related instructions (and some pseudoinstructions)








	Name
	Opcode
	Format
	Operation





	Branch On Equal

	beq

	beq rs1, rs2, label

	if (rs1 == rs2) goto label




	Branch On Not Equal

	bne

	bne rs1, rs2, label

	if (rs1 != rs2) goto label




	Branch Less Than

	blt

	blt rs1, rs2, label

	if (rs1 < rs2) goto label




	Branch Greater Than

	bgt

	bgt rs1, rs2, label

	if (rs2 > rs2) goto label




	Branch Less Than Or Equal

	ble

	ble rs1, rs2, label

	if (rs1 ⇐ rs2) goto label




	Branch Greater Than Or Equal

	bge

	bge rs1, rs2, label

	if (rs1 >= rs2) goto label




	Set Less Than

	slt

	slt rd, rs1, rs2

	rd = (rs1 < rs2) ? 1 : 0




	Set Less Than Immediate

	slti

	slti rd, rs1, imm

	rd = (rs1 < imm) ? 1 : 0




	Set Less Than Immediate Unsigned

	sltiu

	sltiu rd, rs1, imm

	rd = (rs1 < imm) ? 1 : 0




	Set Less Than Unsigned

	sltu

	sltu rd, rs1, rs2

	rd = (rs1 < rs2) ? 1 : 0










You can see the same information and more on the RISC-V
greensheet and the RARS Supported Instructions list.[6][7]

There are additional pseudoinstructions in the form of beq/bne/blt/bgt/ble/bge + 'z' which
are syntactic sugar to compare a register against 0, ie the 0 register.

So the following:


        	beq      t0, x0, label
	bne      t1, x0, label
	blt      t2, x0, label


would be equivalent to:


        	beqz     t0, label
	bnez     t1, label
	bltz     t2, label


Note x0 is the same as zero and is the hard coded 0 register.  I’ll cover
registers in more detail in the chapter on functions and the calling conventions.

One final thing is that labels have the same naming requirements as C variables and
functions.  They must start with a letter or underscore and the rest can be letters,
underscores, or digits.


Practice

          The rest of this chapter will be going over many examples, looking at snippets
of code in C and translating them to RISC-V.


Basics

          Let’s start with the most basic if statement.  The code in and after
the if statement is arbitrary.


        	1
2
3
4

		if (a > 0) {
		a++;
	}
	a *= 2;








Now in RISC-V, let’s assume that a is in t0.  The tranlation would look
like this:


        	1
2
3
4

		ble    t0, x0, less_eq_0   # if (a <= 0) goto less_eq_0
	addi   t0, t0, 1           # a++
less_eq_0:
	slli   t0, t0, 1           # a *= 2  (shifting left by n is multiplying by 2^n)








There are a few things to note in this example.  The first is that in assembly
we test for the opposite of what was in the if statement.  This will always be
the case when jumping forward because (if we want to keep the same order of code)
we can only jump over a block of code, whereas in C we fall into the block if
the condition is true.  In the process of mentally compiling a bit of C to
assembly, it can be helpful to change to jump based logic first.  For example
the previous C would become:


        	1
2
3
4
5

		if (a <= 0)
		goto less_eq_0;
	a++;
less_eq_0:
	a *= 2;








This is obviously still valid C but matches the branching behavior of assembly
exactly.  You can see I put comments for the equivalent C code in my assembly;
it helps with readability to comment every line or group of lines that way.

The second thing to notice is how we handled the multiplication.  This has
nothing to do with branching but is something we’ll touch on multiple times
throughout the book.  Your job when acting as a human compiler is to match the
behavior. You are under no obligation to match the structure or operations
of the higher level code exactly (unless your professor stupidly forces you to).

Given that, it is in your best interest to change and rearrange things in
order to simplify the assembly as much as possible to make your life easier.
Generally speaking, this also tends to result in more performant code, since
using fewer instructions and fewer branches (the most common outcomes) saves
execution time.

In this case, using the standard mul instruction would actually take 2
instructions:


        	1
2

		li     t1, 2
	mul    t0, t0, t1   # a *= 2








This is why, when multiplying or dividing by a constant power of 2 it’s common
practice to use slli or srai.  This is true in all assembly languages because
multiplication and division are relatively costly operations so using shifts
when you can saves performance even if you didn’t actually save instructions.

Ok, let’s look at an if-else example.  Again, the actual code is arbitrary and
we’re assuming a and b are in t0 and t1 respectively


        	1
2
3
4
5

		if (a > 0) {
		b = 100;
	} else {
		b -= 50;
	}








You could do it something like these two ways


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

		bgt     t0, x0, greater_0   # if (a > 0) goto greater_0
	addi    t1, t1, -50        # b -= 50
	j       less_eq_0
greater_0:
	li      t1, 100             # b = 100
less_eq_0:

	# or

	ble     t0, x0, less_eq0    # if (a <= 0) goto less_eq_0
	li      t1, 100             # b = 100
	j       greater_0
less_eq_0:
	addi    t1, t1, -50        # b -= 50
greater_0:








You can see how the first swaps the order of the actual code which keeps the
actual conditions the same as in C, while the second does what we discussed
before and inverts the condition in order keep the the blocks in the same
order.  In both cases, an extra unconditional branch and label are necessary
so we don’t fall through the else case.  This is inefficient and wasteful,
not to mention complicates the code unecessarily.  Remember how our job
is to match the behavior, not the exact structure?  Imagine how we could
rewrite it in C to simplify the logic:


        	1
2
3
4

		b -= 50;
	if (a > 0) {
		b = 100;
	}








which becomes


        	1
2
3
4

		addi    t1, t1, -50        # b -= 50;
	ble     t0, x0, less_eq_0   # if (a <= 0) goto less_eq_0
	li      t1, 100             # b = 100
less_eq_0:








That is a simple example of rearranging code to make your life easier.
In this case, we are taking advantage of what the code is doing to make a
default path or default case.  Obviously, because of the nature of the code
subtracting 50 has to be the default since setting b to 100 overwrites
the original value which we’d need if we were supposed to subtract 50 instead.
In cases where you can’t avoid destructive changes (like where the condition and the
code are using/modifying the same variable), you can use a temporary variable;
i.e. copy the value into a spare register.  You still save yourself an unecessary
jump and label.



Compound Conditions

          These first 2 examples have been based on simple conditions, but what if you
have compound conditions?  How does that work with branch operations that only
test a single condition?  As you might expect, you have to break things down
to match the logic using the operations you have.

Let’s look at and first.  Variables a, b, and c are in t0, t1, and t2.


        	1
2
3
4

		if (a > 10 && a < b) {
		c += 20;
	}
	b &= 0xFF;








So what’s our first step?  Like previous examples, we need to test
for the opposite when we switch to assembly, so we need the equivalent of


        	1
2
3
4
5

		if (!(a > 10 && a < b))
		goto no_add20;
	c += 20;
no_add20:
	b &= 0xFF;








That didn’t help us much because we still don’t know how to handle that compound
condition.  In fact we’ve made it more complicated.  If only there were
a way to convert it to or instead of and.  Why would we want that?  Because,
while both and and or in C allow for short circuit evaluation (where
the result of the whole expression is known early and the rest of expression
is not evaluated), with or, it short circuits on success while and short
circuits on failure.  What does that mean?  It means that with or, the whole
expression is true the second a single true term is found, while with and
the whole expression is false the second a single false term is found.

Let’s look at the following code to demonstrate:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

		if (a || b || c) {
		something;
	}

	// What does this actually look like if we rewrote it to show what it's
	// actually doing with short circuit evaluation?

	if (a) goto do_something;
	if (b) goto do_something;
	if (c) goto do_something;
	goto dont_do_something;

do_something:
	something;

dont_do_something:

	// You can see how the first success is all you need
	// Compare that with and below:

	if (a && b && c) {
		something;
	}

	if (a) {
		if (b) {
			if (c) {
				something;
			}
		}
	}
	// which in jump form is

	if (a)
		goto a_true;
	goto failure;
a_true:
	if (b)
		goto b_true;
	goto failure;

b_true:
	if (c)
		goto c_true:
	goto failure;

c_true:
	something;
failure:

	// Man that's ugly, overcomplicated, and hard to read
	// But what if we did this instead:

	if (!a) goto dont_do_something;
	if (!b) goto dont_do_something;
	if (!c) goto dont_do_something;

	something;

dont_do_something:

	// Clearly you need all successes for and.  In other words
	// to do and directly, you need state, knowledge of past
	// successes.  But what about that second translation of and?
	// It looks a lot like or?








You’re exactly right.  That final translation of and is exactly like or.

It takes advantage of De Morgan’s laws.[8]  For those
of you who haven’t taken a Digital Logic course (or have forgotten), De
Morgan’s laws are 2 equivalencies, a way to change an or to an and, and vice versa.

They are (in C notation):

!(A || B) == !A && !B

!(A && B) == !A || !B

Essentially you can think of it as splitting the not across the terms and changing
the logical operation.  The law works for arbitrary numbers of terms, not just 2:


        (A && B && C)
is really
((A && B) && C)
so when you apply De Morgan's Law recursively you get:
!((A && B) && C) == !(A && B) || !C == !A || !B || !C


Let’s apply the law to our current compound and example.  Of course
the negation of greater or less than comparisons means covering the rest
of the number line so it becomes:


        	1
2
3
4
5

		if (a <= 10 || a >= b))
		goto no_add20;
	c += 20;
no_add20:
	b &= 0xFF;








which turns into:


        	1
2
3
4
5
6
7

		li      t6, 10
	ble     t0, t6, no_add20      # if (a <= 10) goto no_add20
	bge     t0, t1, no_add20      # if (a >= b)  goto no_add20

	addi    t2, t2, 20            # c += 20
no_add20:
	andi    t1, t1, 0xFF          # b &= 0xFF








See how that works?  Or's do not need to remember state.  Just the fact that
you reached a line in a multi-term or expression means the previous checks
were false, otherwise you’d have jumped.  If you tried to emulate the same
thing with an and, as you saw in the larger snippet above, you’d need a
bunch of extra labels and jumps for each term.

What about mixed compound statements?


        	1
2
3
4

		if (a > 10 || c > 100 && b >= c)
		printf("true\n");

	b |= 0xAA;








Well, the first thing to remember is that && has a higher priority than ||,
which is why most compilers these days will give a warning for the above code
about putting parenthesis around the && expression to show you meant it (even
though it’s completely legal as is).

So with that in mind, let’s change it to jump format to better see what we
need to do.  While we’re at it, let’s apply De Morgan’s law to the &&.


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

		if (a > 10)
		goto do_true;
	if (c <= 100)
		goto done_if;
	if (b < c)
		goto done_if;
do_true:
	printf("true\n");

done_if:
	b |= 0xAA;








This one is trickier because we don’t flip the initial expression like normal.
Instead of jumping over the body which would require testing for the opposite,
we jump to the true case.  We do this because we don’t want to have multiple
print statements and it lets us fall through the following conditions.  We would
need multiple print statements because failure for the first expression is not
failure for the entire expression.  Here’s how it would look otherwise:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

		if (a <= 10)
		goto check_and;
	printf("true\n");
	goto done_if;
check_and:
	if (c <= 100)
		goto done_if;
	if (b < c)
		goto done_if;

	printf("true\n");

done_if:
	b |= 0xAA;








That is harder to read and has both an extra print and an extra jump.

So let’s convert the better version to RISC-V (a,b,c = t0, t1, t2):


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	.data
true_str: .asciz "true\n"

.text
	li     t5, 10   # get the necessary literals in some unused regs
	li     t6, 100

	bgt    t0, t5, do_true   # if (a > 10) goto do_true
	ble    t2, t6, done_if   # if (c <= 100) goto done_if
	blt    t1, t2, done_if   # if (b < c) goto done_if

do_true:
	li     a7, 4           # print string
	la     a0, true_str    # address of str in a0
	ecall

done_if:
	ori    t1, t1, 0xAA   # b |= 0xAA










If-Else Chain

          Ok, let’s look at a larger example.  Say you’re trying to determine
a student’s letter grade based on their score.  We’re going to need a chain
of if-else-if's to handle all cases.


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	#include <stdio.h>

int main()
{
	int score;
	char letter_grade;
	printf("Enter your score: ");
	scanf("%d", &score);
	if (score >= 90) {
		letter_grade = 'A';
	} else if (score >= 80) {
		letter_grade = 'B';
	} else if (score >= 70) {
		letter_grade = 'C';
	} else if (score >= 60) {
		letter_grade = 'D';
	} else {
		letter_grade = 'F';
	}
	printf("You got a %c\n", letter_grade);
	return 0;
}








With chains like these, if you follow everything we’ve learned, it comes out
looking like this (assuming score is t0 and letter_grade is t1):


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

	.data
prompt:    .asciz "Enter your score: "
grade_str: .asciz "You got a "

.text
main:
	li     a7, 4    # print str
	la     a0, prompt
	ecall

	li     a7, 5    # read int
	ecall

	mv     t0, a0   # move score into t0
	li     t1, 70   # letter_grade default to 'F' ascii value
	
	li     t2, 90
	blt    t0, t2, not_a    # if (score < 90) goto not_a
	li     t1, 65           # leter_grade = 'A'
	j      grade_done

not_a:
	li     t2, 80
	blt    t0, t2, not_b    # if (score < 80) goto not_b
	li     t1, 66           # leter_grade = 'B'
	j      grade_done

not_b:
	li     t2, 70
	blt    t0, t2, not_c    # if (score < 70) goto not_c
	li     t1, 67           # leter_grade = 'C'
	j      grade_done

not_c:
	li     t2, 60
	blt    t0, t2, grade_done   # if (score < 60) goto grade_done
	li     t1, 68               # leter_grade = 'D'

grade_done:
	li     a7, 4      # print str
	la     a0, grade_str
	ecall

	li     a7, 11      # print character
	mv     a0, t1      # char to print
	ecall

	li     a0, 10    # print '\n'
	ecall

	li     a7, 10    # exit
	ecall








You can see how we set a default value and then test for the opposite
of each condition to jump to the next test, until we get one that fails
(aka was true in the original C condition) and set the appropriate grade.

You can arrange chains like this in either direction, it doesn’t have to match
the order of the C code.  As long as it works the same, do whatever makes the
code simpler and more sensible to you.




Conclusion

          Branching and logic and learning to translate from higher level code to assembly
is something that takes a lot of practice, but eventually it’ll become
second nature.  We’ll get more practice in the chapter on looping which naturally
also involves branching.

One final note, there’s rarely any reason to use the slt family of opcodes
unless your professor requires it for some strange reason.  Even if your
professor says you can’t use pseudoinstructions, that would still leave you with
beq, bne, blt, bge, which covers every possibility even if you sometimes
have to switch the order of the operands.



Exercises

          You can support the book and purchase the chapter exercise solutions
from my store or
Leanpub.



	
Convert the following C code to RISC-V.

        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	#include <stdio.h>

int main()
{
	int num;
	printf("Enter an integer: ");
	scanf("%d", &num);

	if (num > 50) {
		puts("The number is greater than 50");
	} else if (num < 50) {
		puts("The number is less than 50");
	} else {
		puts("You entered 50!");
	}

	return 0;
}










	
Prompt for the user’s name, then tell them whether their name starts with
a letter from the first or second half of the alphabet. Be sure to handle both
upper and lower case correctly, but assume they entered a valid letter.










https://inst.eecs.berkeley.edu/~cs61c/fa17/img/riscvcard.pdf



https://github.com/TheThirdOne/rars/wiki/Supported-Instructions



https://en.wikipedia.org/wiki/De_Morgan%27s_laws









Chapter 4: Loops


        

"Insanity is doing the same thing over and over again and expecting different results."

~ Unknown Often misattributed to Albert Einstein




Before we get into the RISC-V, I want to cover something that may be obvious to some but
may have never occurred to others.  Any loop structure can be converted to any other
(possibly with the addition of an if statement).  So a for can be written as a while
and vice versa.  Even a do-while can be written as a for or while loop.  Let’s look
at some equivalencies.


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

		for (int i=0; i<a; i++) {
		do_something;
	}

	int i = 0;
	while (i < a) {
		do_something;
		i++;
	}

	int i = 0;
	if (i < a) {
		do {
			do_something;
			i++;
		} while (i < a);
	}
	// you could also have an if (i >= a) goto loop_done; to jump over do-while








In general, when writing assembly, it can help to think more in terms of while or
do-while rather than for because the former more closely resemble what the
assembly looks like in terms of what goes where.  Like in the last chapter,
where we would think of the if-else statements in "jump-form" or "branch-form",
we can do the same here, converting for to while in our head as an intermediary
step before going to assembly.

Speaking of "jump-form", lets apply it to the loop above:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

		int i=0;
	if (i >= a)
		goto done_loop;
loop:
	do_something;
	i++
	if (i < a)
		goto loop;

done_loop:








You can see how that starts to look more like assembly.  Another thing to note is that
unlike with if statements where we test for the opposite to jump over the block of code,
when you’re doing the loop test at the bottom like with a do-while, it is unchanged
from C because you are jumping to continue the loop.  If you put the test at the top it
becomes inverted, and you put an unconditional jump at the bottom:


        	1
2
3
4
5
6
7
8
9

		int i=0;
loop:
	if (i >= a)
		goto done_loop;
	do_something;
	i++
	goto loop:

done_loop:








In general it’s better to test at the bottom, both because the condition matches
the higher level form, and because when you know the loop is going to execute at least once it requires
only one jump + label, rather than 2 since you can forgo the the initial if check:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

		for (int i=0; i<10; i++)
		do_something;

	// becomes

	int i=0;
loop:
	do_something;
	i++
	if (i < 10)
		goto loop;








Ok, now that we’ve got the theory and structure out of the way, let’s try doing a simple
one in RISC-V.


        	1
2
3
4

		int sum = 0;
	for (int i=0; i<100; i++) {
		sum += i;
	}








That’s about as basic as it gets, adding up the numbers 0 to 99.


        	1
2
3
4
5
6
7

		li     t0, 0   # sum = 0
	li     t1, 1   # i = 1  we can start at 1 because obviously adding 0 is pointless
	li     t2, 100
loop:
	addi   t0, t0, t1     # sum += i
	addi   t1, t1, 1      # i++
	blt    t1, t2, loop   # while (i < 100)








Ok I don’t think there’s much point in doing any more without getting to what loops
are most often used for, looping through data structures, most commonly arrays.


Looping Through Arrays

          Looping and arrays go together like peanut butter and jam.  An array is a sequence of
variables of the same type, almost always related in some way.  Naturally, you
want to operate on them all together in various ways; sorting, searching,
accumulating, etc.  Given that the only way to do that is with loops, in this
section we’ll cover different ways of looping through arrays, including
multidimensional arrays.


1D Arrays

          Let’s pretend there’s an array int numbers[10]; filled with 10 random numbers.


        	1
2
3
4

		int total = 0;
	for (int i=0; i<10; i++) {
		total += numbers[i];
	}








There are several ways to do this.  The first is the most literal translation.


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

		li    t0, 0     # total = 0
	li    t1, 0     # i = 0
	la    t2, numbers   # t2 = numbers
	li    t3, 10
sum_loop:
	slli  t4, t1, 2   # t4 = i*sizeof(int) == i*4
	add   t4, t4, t2  # t4 = &numbers[i]
	lw    t4, 0(t4)   # t4 = numbers[i]
	add   t0, t0, t4  # total += numbers[i]

	addi  t1, t1, 1   # i++
	blt   t1, t3, sum_loop   # while (i < 10)








We initialize the relevant variables beforehand (numbers and 10 could be loaded
every iteration but that’s less efficient).  Now what’s with the i*4?  We already
discussed using shifts to multiply and divide by powers of 2 in a previous chapter,
but here we’re doing something that higher level languages do automatically for you
every time you do an array access.  When you access the i'th element, under the hood
it is multiplying i by the size of the type of the array and adding that number of
bytes to the base address and then loading the element located there.

If you’re unfamiliar with the C syntax in the comments, & means "address of", so
t4 is being set to the address of the i'th element.  Actually that C syntax is
redundant because the the & counteracts the brackets.  In C adding a number to a
pointer does pointer math (ie it multiplies by the size of the items as discussed
above).  This means that the following comparison is true:

&numbers[i] == numbers + i

which means that this is true too

&numbers[0] == numbers

The reason I use the form on the left in C/C++ even when I can use the right is it
makes it more explicit and obvious that I’m getting the address of an element of an
array.  If you were scanning the code quickly and saw the expression on the right,
you might not realize that’s an address at all, it could be some mathematical
expression (though the array name would hopefully clue you in if it was picked well).

Anyway, back to the RISC-V code.  After we get the address of the element we want, we
have to actually read it from memory (ie load it).  Since it’s an array of words
(aka 4 byte ints) we can use load word, lw.

Finally, we add that value to total, increment i, and perform the loop check.

Now, I said at the beginning that this was the most literal, direct translation
(not counting the restructuring to a do-while form).  However, it is not my preferred
form because it’s not the simplest, nor the shortest.

Rather than calculate the element address every iteration, why not keep a pointer
to the current element and iterate through the array with it?  In C what I’m suggesting
is this:


        	1
2
3
4
5
6
7

		int* p = &numbers[0];
	int i = 0, total = 0;
	do {
		total += *p;
		i++;
		p++;
	} while (i < 10);








In other words, we set p to point at the first element and then increment it every
step to keep it pointing at numbers[i].  Again, all mathematical operations on pointers
in C deal in increments of the byte syze of the type, so p++ is really adding 1*sizeof(int).


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

		li     t0, 0     # total = 0
	li     t1, 0     # i = 0
	la     t2, numbers   # p = numbers
	li     t3, 10
sum_loop:
	lw     t4, 0(t2)    # t4 = *p
	add    t0, t0, t4   # total += *p

	addi   t1, t1, 1    # i++
	addi   t2, t2, 4    # p++  ie p += sizeof(int)
	blt    t1, t3, sum_loop   # while (i < 10)








Now, that may not look much better, we only saved 1 instuction, and if we were
looping through a string (aka an array of characters, sizeof(char) == 1) we wouldn’t
have saved any.  However, imagine if we weren’t using slli to do the multiply but
mul.  That would take 2 instructions, even if one could be above the loop.
And remember we would have to use mul instead of slli if we were iterating
through an array of structures with a size that wasn’t a power of 2, so using this
method saves even more in that rare case.

However, there is one more variant that you can use that can save a few more instructions.
Instead of using i and i<10 to control the loop, use p and the address just past the
end of the array.  In C it would be this:


        	1
2
3
4
5
6
7

		int* p = &numbers[0];
	int* end = &numbers[10];
	int total = 0;
	do {
		total += *p;
		p++;
	} while (p < end);








You could also use != instead of <.  This is similar to using the .end() method
on many C++ data structures when using iterators.  Now the RISC-V version:


        	1
2
3
4
5
6
7
8
9

		li     t0, 0        # total = 0
	la     t2, numbers  # p = numbers
	addi   t3, t2, 40   # end = &numbers[10] = numbers + 10*sizeof(int)
sum_loop:
	lw     t4, 0(t2)    # t4 = *p
	add    t0, t0, t4   # total += *p

	addi   t2, t2, 4    # p++  ie p += sizeof(int)
	blt    t2, t3, sum_loop   # while (p < end)








So we dropped from 10 to 7 instructions, 6 to 4 in the loop itself which is
the most important for performance.  And this was for a 1D array.  Imagine
if you had 2 or 3 indices you had to use to calculate the correct offset.
That’s what we go over in the next section.



2D Arrays

          The first thing to understand is what’s really happening when you declare a 2D
array in C.  The contents of a 2D array are tightly packed, in row-major order,
meaning that all the elements from the first row are followed by all the elements
of the second row and so on.  What this means is that a 2D array is equivalent
to a 1D array with rows*cols elements in the same order:


        	1
2
3
4
5

		#define ROWS 2
	#define COLS 4
	// The memory of these two arrays are identical
	int array[ROWS][COLS] = { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } };
	int array1d[ROWS*COLS] = { 1, 2, 3, 4, 5, 6, 7, 8 };








See the code example
2d_arrays.c for more details.

What this means is that when we declare a 2D array, it’s basically a 1D array with
the size equal to rows * columns.  Also, when we loop through a 2D array, we can
often treat it like a 1D array with a single loop.  So everything that we learned
before applies.

Let’s do an example.


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

		for (int i=0; i<rows; i++) {
		for (int j=0; j<cols; ++j) {
			array[i][j] = i + j;
		}
	}

	// becomes

	int r, c;
	for (int i=0; i<rows*cols; i++) {
		r = i / cols;
		c = i % cols;
		array[i] = r + c;
	}








So assuming rows and cols are in a0 and a1 (and nonzero), it would
look like this:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

		la     t0, array    # p = &array[0]
	li     t1, 0        # i = 0
	mul    t2, a0, a1   # t2 = rows * cols
loop:
	div    t3, t1, a1   # r = i / cols
	rem    t4, t1, a1   # c = i % cols
	add    t3, t3, t4    # t3 = r + c

	sw     t3, 0(t0)      # array[i] = *p = r + c

	addi   t1, t1, 1      # i++
	addi   t0, t0, 4      # p++ (keep pointer in sync with i, aka p = &array[i])
	blt    t1, t2, loop   # while (i < rows*cols)








You might ask if it’s it worth it to convert it to a single loop when you still
need the original i and j as if you were doing nested loops.  Generally, it is
much nicer to avoid nested loops in assembly if you can.  There are many cases
when you get the best of both worlds though.  If you’re doing a clear for example,
setting the entire array to a single value, there’s no need to calculate the row
and column like we did here.  I only picked this example to show how you could
get them back if you needed them.

For comparison here’s the nested translation (while still taking advantage of
the 1D arrangement of memory and pointer iterators):


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

		la     t0, array    # p = &array[0]
	li     t1, 0        # i = 0
looprows:
	li     t2, 0        # j = 0
loopcols:
	add    t3, t1, t2     # t3 = i + j
	sw     t3, 0(t0)      # array[i][j] = *p = i + j

	addi   t2, t2, 1         # j++
	addi   t0, t0, 4         # p++ (keep pointer in sync with i and j, aka p = &array[i][j])
	blt    t2, a1, loopcols  # while (j < cols)

	addi   t1, t1, 1          # i++
	blt    t1, a0, looprows   # while (i < rows)








It’s the same number of instructions, but with an extra label and branch.
I think I prefer this version despite the extra branch.  On the other
hand, either of the last 2 versions are better than the literal
translation below:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

		la     t0, array    # p = &array[0]
	li     t1, 0        # i = 0
looprows:
	li     t2, 0        # j = 0
loopcols:
	add    t3, t1, t2    # t3 = i + j

	# need to calculate the byte offset of element array[i][j]
	mul    t4, t1, a1      # t4 = i * cols
	add    t4, t4, t2      # t4 = i * cols + j
	slli   t4  t4, 2       # t4 = (i * cols + j) * sizeof(int)

	add    t4, t4, t0      # t4 = &array[i][j] (calculated as array + (i*cols + j)*4)

	sw     t3, 0(t4)       # array[i][j] = i + j

	addi   t2, t2, 1         # j++
	blt    t2, a1, loopcols  # while (j < cols)

	addi   t1, t1, 1          # i++
	blt    t1, a0, looprows   # while (i < rows)








That chunk in the middle calculating the offset of every element?  Not only is
it far slower than iterating the pointer through the array, but you can
imagine how much worse it would be for a 3D array with 3 nested loops.




Conclusion

          Hopefully after those examples you have a more solid understanding of looping in
RISC-V and how to transform various loops and array accesses into the form
that makes your life the easiest.  There is more we could cover here, like
looping through a linked list, but I think that’s beyond the scope of what we’ve
covered so far.  Perhaps in a later chapter.



Exercises

          You can support the book and purchase the chapter exercise solutions
from my store or
Leanpub.



	
Convert the following C code to RISC-V.  If using Venus, you can just hard code
a "random" number between 0 and 100.

        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	#include <stdio.h>
#include <stdlib.h>

int main()
{
	int num = rand() % 101
	int guess;
	puts("I'm thinking of a number 0-100.  Try to guess it!");
	while (1) {
		printf("Guess a number: ");
		scanf("%d", &guess);

		if (guess > num) {
			puts("Too high!");
		} else if (guess < num) {
			puts("Too low!");
		} else {
			break;
		}
	}

	printf("Correct, it was %d!\n", num);

	return 0;
}










	
Write a RISC-V program to find and print the average of the following array.
Use integer division.

        	1
2

	.data
array:        .word 93,8,78,-6,51,49,3,2,128,0










	
Write a program to find the min and max of the array in the previous exercise











Chapter 5: Functions and the RISC-V Calling Convention


        While I’m sure everyone here probably knows what functions are, you might
be wondering what a "Calling Convention" is.  In short, it is an
agreement between the caller and callee about how to treat/use
certain registers.  We’ll get to the why and how later.


Functions

          In assembly, a function is simply a label with a return instruction associated with it;
because this is far more ambiguous than a function in a higher level language, it
is good practice to only have a single return instruction associated with a
function.[9]  A comment above the label is also helpful.  Together those help you
quickly see the start and end of the function.


        	1

	void func1() {}








would be


        	1
2
3
4

	# void func1()
func1:
	# body goes here
	ret








As you can see my policy is to put a single line comment of the C prototype above
label.

But how do you call a function in assembly?  You use the instruction Jump and Link:
jal func_label.
Let’s change the hello world program from chapter 0 to call a function:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	.data
hello:   .asciz "Hello World!\n"

.text
main:
	jal   hello_world

	li    a7, 10     # exit ecall
	ecall


# void hello_world()
hello_world:
	li    a7, 4      # print string ecall
	la    a0, hello  # load address of string to print into a0
	ecall

	ret








What jal actually does, is save the address of the next instruction to ra
and then do an unconditional jump to the function label.  So you could achieve
the same results with the following:


        	jal    func

	# is equivalent to

	la     ra, next_instr
	j      func
next_instr:


That would get tiring and ugly fast though, having to come up with unique labels
for the next instruction every time.  You also might be confused about why the
greensheet says jal saves PC+4 in an arbitrary register R[rd] instead of ra
specifically (which would be R[1]).  The instruction does actually take a register argument but
since it’s most commonly used to call a function if you don’t specify a register
it will use ra as if you did jal  ra, func.  This works in conjunction with
the pseudoinstruction ret which does PC=R[1] using the instruction jalr
(specifically jalr  x0, ra, 0) to easily return from functions.
You might also see another way of returning using jr which stands for
"Jump Register" and jumps to the address in the register, so to return
from a function you’d do jr   ra.  It is also a pseudoinstruction
that uses jalr.  Unless your professor insists on something else, prefer
ret; not only is it the shortest, returning from functions is its sole
purpose.



The Convention

          We’ve gone as far as we can without starting to talk about registers and their
purposes in functions.  You can think of registers as variables[10] that
are part of the CPU.  In this case, since we’re dealing with a 32-bit RISC-V
architecture, they are 32-bit (aka 4 bytes, 1 word) variables.[11]  Since
they’re part of the CPU, they exist for the life of the program and the whole
program shares the same registers.

But how does that work?  If all parts of the program use the same
32 registers, how does one function not stomp all over what another was doing
when it uses them?  In fact, how do functions communicate at all?  How do they
pass arguments or return results?  All these questions are solved by deciding
on a "Calling Convention".  It’s different for different architectures and even
different operating systems on the same architecture.  This is because different
architectures have different numbers of registers, and some registers like ra have
semi-hardcoded uses.  The the pseudoinstruction ret uses ra, and x0 is a
constant 0 and there’s no way to change either of those facts.  That still
leaves a lot of flexibility when designing a calling convention.  While they
mostly match, you can probably find several variations of RISC-V calling
conventions online.  They usually differ in how they setup a stack frame.
The convention covered in this chapter is consistent with, and sufficient for,
almost every college course I’ve ever heard of.

Regardless, what matters is that the calling convention works by setting rules
(and guidelines) for register use, and when/how to use the stack.

If you’re unfamiliar with the
runtime stack, it’s exactly what it sounds like.  It’s a Last-In-First-Out (LIFO)
data structure that you can use to store smaller values in a program.  It grows
in a negative direction, so to allocate 12 bytes, you would subtract 12 from the
stack pointer (in RISC-V that’s sp).

RISC-V specifically designates certain registers to be used for passing arguments
(at least the first 8), a couple for return values, and others for misc. temporary
or saved values.  The rest are special use registers like ra.

The quickest way to summarize is to look at the table
on the greensheet which is reproduced below:




Table 4. RISC-V Registers and Uses








	Register
	Name
	Use
	Preserved Across a Call





	x0

	zero

	Constant 0

	N.A.




	x1

	ra

	Return address

	No




	x2

	sp

	Stack pointer

	Yes




	x3

	gp

	Global pointer

	 — 




	x4

	tp

	Thread pointer

	 — 




	x5-x7

	t0-t2

	Temporaries

	No




	x8

	s0/fp

	Saved register/Frame pointer

	Yes




	x9

	s1

	Saved register

	Yes




	x10-x11

	a0-a1

	Function arguments/Return values

	No




	x12-x17

	a2-a7

	Function arguments

	No




	x18-x27

	s2-s11

	Saved registers

	Yes




	x28-x31

	t3-t6

	Temporaries

	No










To summarize, you have 15 registers that can be used anytime for temporary
values, though some have special uses too (the a and t registers).
You have 12 s registers that have to be saved on the stack if you use
them, plus ra as well.  The zero register is obviously a special case.

The sp register is technically preserved but not in the same way.  Basically
what you allocate (subtract) you have to deallocate (add) before returning
from a function, thus preserving the original value.

You can ignore gp, tp, and most of the time fp too.  Also, with 8 registers
to pass arguments, you’ll almost never need to pass arguments on the stack.


Basic example

          Let’s start with something simple that doesn’t use the stack.


        int hello_name_number(char* name, int number)
{
	printf("Hello %s!\n", name);
	return number + 10;
}


According to the convention that becomes:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	.data
hello_space:  .asciz "Hello "
exclaim_nl:   .asciz "!\n"

.text
# int hello_name_number(char* name, int number)
hello_name_number:
	mv       t0, a0   # save name in t0 since we need a0 for the ecall

	li       a7, 4        # print string
	la       a0, hello_space
	ecall

	mv       a0, t0    # print name (a7 is still 4)
	ecall

	la       a0, exclaim_nl  # print "!\n"
	ecall


	addi     a0, a1, 10  # return number + 10
	ret








Some things to note, ecalls are not function calls so we can "save" a0 in
a t register and know that it’ll still be there when the ecall is done.  In the
same way, we know that a7 is still the same so we don’t have to keep setting
it to 4 for print string.  Lastly, to return a value, we make sure that value
is in a0 before returning.



Using the Stack

          First, let’s establish the rules on when you have to use the stack (You can
always use it for arbitrary local variables, like a local array for example, but
generally don’t if you don’t have a good reason).



	
You call another function, ie you’re a non-leaf function.
This means you have to save ra on the stack at the very least, otherwise when you
do your ret you’d jump back into yourself (right after the last jal instruction).
This does not apply to main because you don’t/shouldn’t return from main, you should
call the exit (or exit2) ecall (10 or 93).



	
You need to save values across a function call (automatically includes reason 1).
This is fairly common for non-trivial functions. Obvious examples are calling a
function in a loop or loops (you’d have to preserve the iterator(s)), and
many recursive functions.



	
You run out of temporary registers and overflow into the s registers.
This is very rare.  The most common reason this "happens" is people forget they have
8 a registers, in addition to the 7 t registers, that they can also use for temporaries.
15 is more than enough to handle pretty much any function because you rarely need 16
discrete values at the same time.







Let’s look at an example for the first two.  Any example for the last rule
would be prohibitively large and complicated.


        	1
2
3
4
5

	int non_leaf()
{
	func1();
	return 42
}








This calls the empty function discussed at the top of this chapter.


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	#int non_leaf()
non_leaf:
	addi     sp, sp, -4  # space to save 1 register, ra
	sw       ra, 0(sp)   # store ra in the newly allocated stack space

	jal      func1

	li       a0, 42       # return 42

	lw       ra, 0(sp)   # restore original ra
	addi     sp, sp, 4   # pop the stack
	ret








The bit of code at the top and bottom of the function are called the prologue
and epilogue respectively for obvious reasons.  We allocate 4 bytes on the stack
by subtracting 4 (I add a negative rather than subtract
because I can copy-paste the line with a single character change for the
epilogue).  Then we store the current ra in that space at the new top of the
stack.  Then before we exit we have to load it back and pop the stack.

If we didn’t save and restore ra we would jump to line 7 when we do our
ret and then we’d be in an infinite loop.

Next we have the second case, where we need to preserve regular local values
across a function call.


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	void print_letters(char letter, int count)
{
	for (int i=0; i<count; i++) {
		putchar(letter);
	}
	putchar('\n');
}

int save_vals()
{
	for (int i=0; i<10; i++) {
		print_letters('A'+i, i+1);
	}
	return 8;
}








That becomes this in RISC-V:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	#void print_letters(char letter, int count)
print_letters:
	ble      a1, x0, exit_pl   # if (count <= 0) goto exit_pl
	li       a7, 11            # print character
pl_loop:
	ecall
	addi     a1, a1, -1        # count--
	bgt      a1, x0, pl_loop   # while (count > 0)

	li       a0, 10            # '\n'
	ecall

exit_pl:
	ret


#int save_vals()
save_vals:
	addi     sp, sp, -12
	sw       ra, 0(sp)
	sw       s0, 4(sp)
	sw       s1, 8(sp)

	li       s0, 0  # i = 0
	li       s1, 10
sv_loop:
	addi     a0, s0, 65   # i + 'A'
	addi     a1, s0, 1    # i + 1
	jal      print_letters

	addi     s0, s0, 1        # i++
	blt      s0, s1, sv_loop  # while (i < 10)

	lw       ra, 0(sp)
	lw       s0, 4(sp)
	lw       s1, 8(sp)
	addi     sp, sp, 12
	ret








Notice that for print_letters, we not only convert the loop to a do-while, but
we also use the parameter count as the iterator to count down to 0.  It saves
us an instruction initializing an i.

Second, for save_vals, we save not only ra because we call another function,
but also two s registers to save i and our stopping point.  The second is not
actually necessary; because it’s a constant, we could load 10 into a register
right before the check every iteration of the loop.  Which version is better depends on
several factors, like how long or complex the loop is, how many times it executes, and
of course personal preference.



Recursive Functions

          Let’s do a classic recursive function, the fibonacci sequence.


        	1
2
3
4
5
6
7

	int fib(int n)
{
	if (n <= 1)
		return n;

	return fib(n-2) + fib(n-1);
}








You can see how, at the very least, we’ll have to save ra and n, because we
need the original even after the first recursive call.  It’s not as
obvious, but we’ll also have to save the return value of the first call so
we’ll still have it to do the addition after the second.  You might think
this would require using two s regs, but does it?  Let’s see…


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	#int fib(int n)
fib:
	addi    sp, sp, -8
	sw      ra, 0(sp)
	sw      s0, 4(sp)

	# n already in a0 for immediate return
	li      t0, 1
	ble     a0, t0, exit_fib  # if (n <= 1) goto exit_fib (ie return n)

	mv      s0, a0        # save n

	addi    a0, a0, -2
	jal     fib           # fib(n-2)

	addi    t0, s0, -1    # calc n-1 first so we can use s0 to save fib(n-2)
	mv      s0, a0        # save return of fib(n-2) in s0
	mv      a0, t0        # copy n-1 to a0
	jal     fib           # fib(n-1)

	add     a0, a0, s0    #  a0 = fib(n-1) + fib(n-2)

exit_fib:
	lw      ra, 0(sp)
	lw      s0, 4(sp)
	addi    sp, sp, 8
	ret








Notice how we don’t have to save n any sooner than necessary, ie right before
we have to use a0 to setup the first recursive call.  Also, the ordering of
lines 16-18 is important.  We needed the original n to calculate n-1 but
once that’s in a0 ready for the call, because we won’t need n again afterward,
we can now use s0 to preserve the return value of the first call.

Some of you, if you were paying attention, might point out that you could save
a few instructions of performance if you moved the base case testing before the
prologue as long as you put the exit label after the epilogue.  This is true,
but I’d recommend against it unless you were really trying to eke out every last
microsecond.  It’s nicer/cleaner to keep the prologue and epilogue as the
first and last things; they’re one more thing to catch your eye and help delineate
where functions start and end.  Regardless, if you’re curious, you can see that
version, along with every other function in this chapter in the included program
calling.s.




Conclusion

          While grasping the basics of a calling convention is not too difficult, it takes
practice to get used to it.  There are many things that we haven’t covered
in this chapter, like how to pass more than 8 arguments, or use fp, or handle
floating point arguments or return values.  The latter at least, will be covered in
the next chapter.



Exercises

          You can support the book and purchase the chapter exercise solutions
from my store or
Leanpub.



	
Implement the following functions in RISC-V and write a program to demonstrate their use.
You can reuse much of your code from the previous chapter’s exercises.

        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	// return the min or max
int get_min(int* array, int size);
int get_max(int* array, int size);

// return the index of the min/max
int locate_min(int* array, int size);
int locate_max(int* array, int size);

// return the average of the array
int calc_average(int* array, int size);










	
The Collatz conjecture is defined as follows: start with any positive integer n,
if n is even, divide by 2, otherwise, multiply by 3 and add 1.  The conjecture is
that all sequences will eventually reach 1.  Write 2 versions of the collatz function,
one iterative and one recursive.  Print out the sequence as they go.

        	1
2
3
4
5
6
7

	void collatz_iterative(int n);
void collatz_recursive(int n);

// for an added challenge return the number of steps taken to reach 1
// you can remove the printing of the steps
int collatz_iterative2(int n);
int collatz_recursive2(int n);


















I do not agree with an ironclad "one return" policy in higher level languages.  Sometimes returning early results in cleaner code, sometimes not.  Similarly, `goto` is not evil and there are rare cases where using it creates the best code.



Obviously the zero register is not really a variable.  I never understood how people could say "const variable" with a straight face, it’s literally an oxymoron.



RARS does support 64 bit I think TODO









Chapter 6: Floating Point Types


        Up to this point we haven’t really mentioned floating point values or instructions
at all, except how to declare them in the .data section and the ecalls for
reading and printing them.  There are two reasons we’ve left them alone till now.
First, they use a whole separate set of registers and instructions.  Second, and
partly because of the first reason, most college courses do not ever require
you to know or use floating point values.  Since this book is targeted at college
students, if you know you won’t need to know this feel free to skip this chapter.


Floating Point Registers and Instructions

          The greensheet contains all the floating point registers and their uses but you
can also see them in the table below:




Table 5. RISC-V Floating Point Registers and Uses








	Register
	Name
	Use
	Preserved Across a Call





	f0-f7

	ft0-ft7

	Temporaries

	No




	f8-f9

	fs0-fs1

	Saved registers

	Yes




	f10-f11

	fa0-fa1

	Arguments/Return values

	No




	f12-f17

	fa2-fa7

	Arguments

	No




	f18-f27

	fs2-fs11

	Saved registers

	Yes




	f28-f31

	ft8-ft11

	Temporaries

	Yes










Likewise, you can look to the greensheet to see all the floating point instructions
but here are the most important/useful ones:




Table 6. RISC-V floating point instructions (and pseudoinstructions)








	Name
	Opcode
	Format
	Operation





	Load

	flw,fld

	flw rd, n(rs1)

	F[rd] = M[R[rs1]+n]




	Store

	fsw,fsd

	fsw rd, n(rs1)

	M[R[rs1]+n] = F[rd]




	Move from Integer

	fmv.[sd].x

	fmv.s.x rd, rs1

	F[rd] = R[rs1]




	Move to Integer

	fmv.x.[sd]

	fmv.x.s rd, rs1

	R[rd] = F[rs1]




	Move

	fmv.[sd]

	fmv.s rd, rs1

	F[rd] = F[rs1]




	Convert to SP from DP

	fcvt.s.d

	fcvt.s.d rd, rs1

	F[rd] = (float)F[rs1]




	Convert to DP from SP

	fcvt.d.s

	fcvt.d.s rd, rs1

	F[rd] = (double)F[rs1]




	Convert from 32b Integer

	fcvt.[sd].w

	fcvt.s.w rd, rs1

	F[rd] = (float)R[rs1]




	Convert to 32b Integer

	fcvt.w.[sd]

	fcvt.w.s rd, rs1

	R[rd] = (int)F[rs1]




	Compare Equal

	feq.[sd]

	feq.s rd, rs1, rs2

	R[rd] = (F[rs1] == F[rs2]) ? 1 : 0




	Compare Less Than

	flt.[sd]

	flt.s rd, rs1, rs2

	R[rd] = (F[rs1] < F[rs2]) ? 1 : 0




	Compare Less Than Equal

	fle.[sd]

	fle.s rd, rs1, rs2

	R[rd] = (F[rs1] ⇐ F[rs2]) ? 1 : 0




	Absolute Value

	fabs.[sd]

	fabs.s rd, rs1

	F[rd] = (F[rs1] < 0) ? -F[rs1] : F[rs1]




	Add

	fadd.[sd]

	fadd.s rd, rs1, rs2

	F[rd] = F[rs1] + F[rs2]




	Subtract

	fsub.[sd]

	fsub.s rd, rs1, rs2

	F[rd] = F[rs1] - F[rs2]




	Multiply

	fmul.[sd]

	fmul.s rd, rs1, rs2

	F[rd] = F[rs1] * F[rs2]




	Divide

	fdiv.[sd]

	fdiv.s rd, rs1, rs2

	F[rd] = F[rs1] / F[rs2]




	Negation

	fneg.[sd]

	fneg.s rd, rs1

	F[rd] = -F[rs1]










Anywhere you see a [sd], use s or d for single or double precisision.

You only get equal, less than, and less than equal, but it’s easy enough to
flip the operands or test for the opposite result to cover the others.



Practice

          We’re going to briefly go over some of the more different aspects of dealing
with floating point numbers, but since most of it is the same but with a new
set of registers and calling convention, we won’t be rehashing most concepts.



Getting Floating Point Literals

          The first thing to know when dealing with floats is how to get float
(or double) literals into registers where you can actually operate on them.

There are two ways.  The first, and simpler way, is to declare them as globals
and then use the flw and fld instructions:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	.data
a:     .float 3.14159
b:     .double 1.61

.text
main:

	la      t0, a
	flw     ft0, 0(t0)   # get a into ft0

	la      t0, b
	fld     ft1, 0(t0)   # get b into ft1

	# other code here








The second way is to use the regular registers and convert the values.  Of course
this means unless you want an integer value, you’d have to actually do it twice
and divide, and even that would limit you to rational numbers.  It looks like this:


        	1
2
3
4
5

		fmv.s.x   ft0, x0     # move 0 to ft0 (0 integer == 0.0 float)

	# get 4 to 4.0 in ft1
	li        t0, 4
	fcvt.s.w  ft1, t0     # ft1 = (float)t0








As you can see, other than 0 which is a special case, it requires at least 2
instructions.



There is a 3rd way in RARS that saves you a step.  RARS lets you
use flw and fld like this flw   ft0, label, t0 where t0 is used as
a temporary, ie it’s doing the load address into t0 for you before doing
the actual flw.






Branching

          Branching based on floating point values is slightly different than normal.  Instead
of being able to test and jump in a single convenient instruction, you have to test
first and then jump in a second instruction if the test was true or not.  This is similar
to the way x86 and MIPS (for floats) do it.  For them, the test sets a special control/flag
register (or a certain bit or bits in the register) and then all jumps are based on its state.

With RISC-V there is no special control register.  The float comparisons are like the slt
instructions where you choose a destination register to set to 1 (true) or 0 (false).

Using them looks like this:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

		flt.s    t0, ft0, ft1   # t0 = ft0 < ft1
	bne      t0, x0, was_less   # if (t0 != 0 aka ft0 < ft1) goto was_less

	# do something for ft0 >= ft1

	j       blah
was_less:

	# do something for ft0 < ft1

blah:










Functions

          Finally, lets do a simple example of writing a function that takes a float and
returns a float.  I’m not going to bother doing one for doubles because it’d
be effectively the same, or doing one that requires the stack, because the only
differences from normal are a new set of registers and knowing which ones to save
or not from the table above.

So, how about a function to convert a fahrenheit temperature to celsius:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	.data

# 5/9 = 0.5 with 5 repeating
fahrenheit2celsius: .float 0.5555555

.text
# float convert_F2C(float degrees_f)
convert_F2C:
	la       t0, fahrenheit2celsius
	flw      ft0, 0(t0)    # get conversion factor

	# C = (F - 32) * 5/9
	li       t0, 32
	fcvt.s.w ft1, t0       # convert to 32.0

	fsub.s   fa0, fa0, ft1  # fa0 = degrees_f - 32
	fmul.s   fa0, ft0, fa0  # fa0 = 0.555555 * fa0

	ret








You can see we follow the convention with the argument coming, and the result being
returned, in fa0.  In this function we use both methods for getting
a value into float registers; one we load from memory and the other, being
an integer, we convert directly.



Conclusion

          As I said before, it is rare for courses to even bother covering floating point
instructions or assign any homework or projects that use them.  Venus
doesn’t even support floating point instructions.  Hopefully this
brief overview, combined with the knowledge of previous chapters is
sufficient if you do need or want to work with floating point values.

There are also 2 example programs
conversions.s
and
calc_pi.s
for you to study.



Exercises

          You can support the book and purchase the chapter exercise solutions
from my store or
Leanpub.



	
Write a program to convert an input in minutes to hours.


	
Write the following functions and use them in a program.

        	1
2

	float miles2kilometers(float miles);
float pounds2kilograms(float pounds);



















Chapter 7: Tips and Tricks


        This chapter is a grab bag of things you can do to improve your RISC-V
programs and make your life easier.


Formatting

          You may have noticed I have a general format I like to follow when writing
RISC-V (or any) assembly.  The guidelines I use are the following



	
1 indent for all code excluding labels/macros/constants.
I use hard tabs set to a width of 4 but it really doesn’t matter as long as
it’s just 1 indent according to your preferences.



	
Use spaces to align the first operand of all instructions out far enough.
Given my 4 space tabs, this means column 13+ (due to longer floating point
instructions like fcvt.s.w, though I often stop at 10 or 11 when that’s sufficient).
The reason to use spaces is to prevent the circumstances that gave
hard tabs a bad name.  When you use hard tabs for alignment, rather than indentation,
and then someone else opens your code with their tab set to a different width,
suddenly everything looks terrible.  Thus, tabs for indentation, spaces for alignment.
Or as is increasingly common (thanks Python), spaces for everything but I refuse
to do that to the poor planet.[12]



	
A comma and a single space between operands.
The simulators don’t actually require the comma but since other assembly
languages/assemblers do, you might as well get used to it.  Besides I think
it’s easier to read with the comma, though that might be me comparing it
to passing arguments to a function.



	
Comment every line or group of closely related lines with the purpose.
This is often simply the equivalent C code.  You can relax this a little as you get
more experience.



	
Use a blank line to separate logically grouped lines of code.
While you can smash everything together vertically, I definitely wouldn’t recommend
it, even less than I would in a higher level language.



	
Put the .data section at the top, similar to declaring globals in C.
There are exceptions for this.  When dealing with a larger program with lots
of strings, it can be convenient to have multiple .data sections with the
strings you’re using declared close to where you use them.  The downside is
you have to keep swapping back and forth between .text and .data.









Misc. General Tips

          

	
Try to use registers starting from 0 and working your way up.
It helps you keep track of where things are (esp. combined with the comments).
This can fall apart when you discover you forgot something or need to
modify the code later and it’s often not worth changing all the registers
you’re already using so you can maintain that nice sequence.  When that happens
I’ll sometimes just pick the other end of sequence (ie t6, a7, or s11) since
if it’s out of order I might as well make it obvious.



	
Minimize your jumps, labels, and especially your level of nested loops.
This was already covered in the chapters on branching and loops but it bears
repeating.



	
In your prologue save ra first, if necessary, then all s regs used starting at s0.
Then copy paste the whole thing to the bottom, move the first line to the bottom and
change the number to positive and change all the sw to lw.









func:
	addi     sp, sp, -20
	sw       ra, 0(sp)
	sw       s0, 4(sp)
	sw       s1, 8(sp)
	sw       s2, 12(sp)
	sw       s3, 16(sp)

	# body of func here that calls another function or functions
	# and needs to preserve 4 values across at least one of those calls

	lw       ra, 0(sp)
	lw       s0, 4(sp)
	lw       s1, 8(sp)
	lw       s2, 12(sp)
	lw       s3, 16(sp)
	addi     sp, sp, 20





Constants

          One of the easiest things you can do to make your programs more readable
is to use defined constants in your programs.  RARS has a way of defining
constants similar to how C defines macro constants; ie they
aren’t "constant variables" that take up space in memory, it’s as if a
search+replace was done on them right before assembling the program.

Let’s look at our Hello World program using constants:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	.eqv sys_print_str 4
.eqv sys_exit 10

.data
hello:   .asciz "Hello World!\n"

.text
main:
	li   a7, sys_print_str
	la   a0, hello  # load address of string to print into a0
	ecall

	li   a7, sys_exit
	ecall










Macros

          RARS supports function style macros that can shorten your code and improve
readability in some cases (though I feel it can also make it worse or be a wash).

The syntax looks like this:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	.macro macroname
	instr1  a, b, c
	instr2, b, d
# etc.
.end_macro

# or with parameters
.macro macroname(%arg1)
	instr1    a, %arg1
	instr2    c, d, e
# etc.
.end_macro








Some common examples are using them to print strings:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	.macro print_str_label(%x)
	li     a7, 4
	la     a0, %x
	ecall
.end_macro

.macro print_str(%str)
.data
str: .asciz %str
.text
	li     a7, 4
	la     a0, str
	ecall
.end_macro

.data

str1:   .asciz "Hello 1\n"

.text
# in use:
	print_str_label(str1)

	print_str("Hello World\n")

	...








You can see an example program in
macros.s.



Switch-Case Statements

          It is relatively common in programming to compare an integral type variable
(ie basically any built-in type but float and double) against a bunch of different
constants and do something different based on what it matches or if it matches none.

This could be done with a long if-else-if chain, but the longer the chain the more
likely the programmer is to choose a switch-case statement instead.

Here’s a pretty short/simple example in C:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

		printf("Enter your grade (capital): ");
	int grade = getchar();
	switch (grade) {
	case 'A': puts("Excellent job!"); break;
	case 'B': puts("Good job!"); break;
	case 'C': puts("At least you passed?"); break;
	case 'D': puts("Probably should have dropped it..."); break;
	case 'F': puts("Did you even know you were signed up for the class?"); break;
	default: puts("You entered an invalid grade!");
	}








You could translate this to its eqivalent if-else chain and handle it like we
cover in the chapter on branching.  However, imagine if this switch statment had
a dozen cases, two dozen etc.  The RISC-V code for that quickly becomes long and ugly.

So what if we implemented it in RISC-V the same way it is semantically in C?
The same way compilers often (but not necessarily) use?  Well, before we do that,
what is a switch actually doing?  It is jumping to a specific case label based
on the value in the specified variable.  It then starts executing, falling through
any other labels, till it hits a break which will jump to the end of the switch
block.  If the value does not have its own case label, it will jump to the default
label.

Compilers handle it by creating what’s called a jump table, basically an array
of label addresses, and using the variable to calculate an index in the table
to use to jump to.

The C eqivalent of that would look like this:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

	#include <stdio.h>


// This compiles with gcc, uses non-standard extension
// https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html 

int main()
{

	// jump table
	void* switch_table[] =
	{ &&a_label, &&b_label, &&c_label, &&d_label, &&default_label, &&f_label };

	printf("Enter your grade (capital): ");
	int grade = getchar();
	grade -= 'A';  // shift to 0

	if (grade < 0 || grade > 'F'-'A')
		goto default_label;

	goto *switch_table[grade];

a_label:
	puts("Excellent job!");
	goto end_switch;

b_label:
	puts("Good job!");
	goto end_switch;

c_label:
	puts("At least you passed?");
	goto end_switch;

d_label:
	puts("Probably should have dropped it...");
	goto end_switch;

f_label:
	puts("Did you even know you were signed up for the class?");
	goto end_switch;

default_label:
	puts("You entered an invalid grade!");


end_switch:


	return 0;
}








The && and goto *var syntax are actually not standard C/C++ but are GNU
extensions that are supported in gcc (naturally) and clang, possibly others.[13]

First, notice how the size of the jump table is the value of the highest valued label
minus the lowest + 1.  That’s why we subtract the lowest value to shift the range
to start at 0 for the indexing.  Second, any values without labels within that range
are filled with the default_label address.  Third, there has to be an initial
check for values outside the range to jump to default otherwise you could get an
error from an invalid access outside of the array’s bounds.

The same program/code in RISC-V would look like this:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

	.data

a_str:  .asciz "Excellent job!\n"
b_str:  .asciz "Good job!\n"
c_str:  .asciz "At least you passed?\n"
d_str:  .asciz "Probably should have dropped it...\n"
f_str:  .asciz "Did you even know you were signed up for the class?\n"

invalid_str:  .asciz "You entered an invalid grade!\n"

enter_grade:  .asciz "Enter your grade (capital): "

switch_labels: .word a_label, b_label, c_label, d_label, default_label, f_label

.text

main:

	li      a7, 4
	la      a0, enter_grade
	ecall

	li      a7, 12    # read char
	ecall

	li      t2, 5    # f is at index 5

	la      t0, switch_labels
	addi    t1, a0, -65   # t1 = grade - 'A'
	blt     t1, x0, default_label   # if (grade-'A' < 0) goto default
	bgt     t1, t2, default_label  # if (grade-'A' > 5) goto default

	slli    t1, t1, 2     # offset *= 4 (sizeof(word))
	add     t0, t0, t1    # t0 = switch_labels + byte_offset = &switch_labels[grade-'A']
	lw      t0, 0(t0)     # load address from jump table
	jr      t0            # jump to address

a_label:
	la      a0, a_str
	j       end_switch

b_label:
	la      a0, b_str
	j       end_switch

c_label:
	la      a0, c_str
	j       end_switch
	
d_label:
	la      a0, d_str
	j       end_switch

f_label:
	la      a0, f_str
	j       end_switch

default_label:
	la      a0, invalid_str


end_switch:
	li      a7, 4
	ecall

	li      a7, 10   # exit
	ecall








You can see we can use the pseudoinstruction jr (jump register) to do the eqivalent
of the computed goto statement in C.

This example probably wasn’t worth making switch style, because the overhead
and extra code of making the table and preparing to jump balanced out or even
outweighed the savings of a branch instruction for every case.  However, as the
number of options increases, the favor tilts toward using a jump table like this as
long as the range of values isn’t too sparse.  If the range of values is in the 100’s
or 1000’s but you only have cases for a dozen or so, then obviously it isn’t worth
creating a table that large only to fill it almost entirely with the default label
address.

To reiterate, remember it is not about the magnitude of the actual values
you’re looking for, only the difference between the highest and lowest because
high - low + 1 is the size of your table.



Command Line Arguments

          Command line arguments, also known as program arguments, or command line parameters,
are strings that are passed to the program on startup.  In high level languages like
C, they are accessed through the parameters to the main function (naturally):


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	#include <stdio.h>

int main(int argc, char** argv)
{
	printf("There are %d command line arguments:\n", argc);

	for (int i=0; i<argc; i++) {
		printf("%s\n", argv[i]);
	}

	return 0;
}








As you can see, argc contains the number of parameters and argv is an array of
those arguments as C strings.  If you run this program you’ll get something
like this:


        $ ./args 3 random arguments
There are 4 command line arguments:
./args
3
random
arguments


Notice that the first argument is what you actually typed to invoke the program,
so you always have at least one argument.

RISC-V works the same way.  The number of arguments is in a0 and an array of strings
is in a1 when main starts.  So the same program in RISC-V looks like this:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

	.data

there_are:  .asciz "There are "
arguments:  .asciz " command line arguments:\n"

.text
main:
	mv        t0, a0  # save argc

	li        a7, 4
	la        a0, there_are
	ecall

	mv        a0, t0
	li        a7, 1   # print int
	ecall

	li        a7, 4
	la        a0, arguments
	ecall

	li        t1, 0   # i = 0
	j         arg_loop_test

arg_loop:
	li        a7, 4
	lw        a0, 0(a1)
	ecall

	li        a7, 11
	li        a0, 10    # '\n'
	ecall

	addi      t1, t1, 1   # i++
	addi      a1, a1, 4    # argv++ ie a1 = &argv[i]
arg_loop_test:
	blt       t1, t0, arg_loop  # while (i < argc)

	li        a7, 10
	ecall








Unfortunately, RARS works slightly differently, probably because it’s more GUI focused.
It does not pass the program/file name as the first argument, so you can actually get
0 arguments:


        $ java -jar ~/rars_latest.jar args.s pa 3 random arguments
RARS 1.5  Copyright 2003-2019 Pete Sanderson and Kenneth Vollmar

There are 3 command line arguments:
3
random
arguments

Program terminated by calling exit


You can see that you have to pass "pa" (for "program arguments") to indicate that
the following strings are arguments.  In the GUI, there is an option in
"Settings" called "Program arguments provided to progam" which if selected will
add a text box above the Text Segment for you to enter in the arguments to be
passed.



[image: enable rars args]


Figure 1. Enable program arguments in RARS GUI



[image: rars args]


Figure 2. Example using program arguments in RARS GUI



No Pseudoinstructions Allowed

          One relatively common assignment requirement is forbidding pseudoinstructions,
either all of them, or some subset of them.  This forces us to explicitly write
what those pseudoinstructions are translated into (or could be translated into
since there are often several alternatives).




Table 7. Pseudoinstruction Equivalents







	Pseudoinstruction
	Example Use
	Equivalence





	Load Immediate

	

li     t0, 42




	

ori    t0, x0, 42
# or
addi   t0, x0, 42









	Move

	

mv     t0, t1




	

or     t0, x0, t1
# or
add    t0, x0, t1
# or
addi   t0, t1, 0









	Load Address

	

la     t0, label




	

lui    t0, 0x10010
ori    t0, t0, byte_offset









	Branch Less Than or Equal

	

ble   t0, t1, label




	

# test for < and = separately
blt     t0,  t1, label
beq     t0,  t1, label





# or add 1 to change <= to <
# use a spare reg if you need
# to preserve the original value
addi    t3, t1, 1
blt     t0, t3, label









	Branch Greater Than

	

bgt   t0, t1, label




	

# flip the operands and use blt
blt   t1, t0, label









	Return

	

ret




	

# as mentioned in chapter 5
jalr   x0, ra, 0









	Jump Register

	

jr   t0




	

# as mentioned in chapter 5
jalr   x0, t0, 0















You can see how you use the non-pseudoinstructions to match the same behavior, and
there’s often (usually) more than one way.

Another thing I should comment on is the la equivalence.  The reason it is
a pseudoinstruction in the first place is that an address is 32 bits.  That’s also
the size of a whole instruction.  Clearly there’s no way to represent a whole
address and anything else at the same time.  The lower right corner of the
greensheet has the actual formats of the 6 different types of instructions and
even the U and UJ formats still needs 12 bits for the opcode and destination.
This is why lui (and auipc) exists,
in order to facilitate getting a full address into a register by doing it in two
halves, 20 + 12.  The lower 12 can be placed with addi or ori after the lui.



RARS actually uses auipc not lui probably because that’s what the RISC-V
spec says (also see top left on page 2 of the greensheet). They both can accomplish
the same thing but the former is needed for PC-relative addressing which whereas
lui is 0/absolute addressing. Since RARS works with absolute addressing
the easier-to-use lui is fine.




That begs the question, what actually goes in the upper half?  Well, since
we’re dealing with addresses in the .data section, the upper portion should
match the upper part of address of the .data section.  In RARS the
.data section starts at 0x10010000.

But what about the lower part of the address?  This involves counting the bytes
from the top of .data to the label you want.  If all you have is words, halfs,
floats, doubles, or space (with a round number), that’s fairly easy, but the
second you have strings between the start and the label you want, it’s a bit
more painful.  This is why I recommend putting any string declarations at the
bottom so at least any other globals will have nice even offsets.  Also, if
you have a bunch of globals, it doesn’t hurt to count once and put the offsets
in comments above each label so you don’t forget.  Of course, none of this matters
if you’re allowed to just use la which is true the vast majority of the time.

Let’s look at a small example.  We’ll convert the args.s from above (reproduced
here for convenience) to bare mode:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

	.data

there_are:  .asciz "There are "
arguments:  .asciz " command line arguments:\n"

.text
main:
	mv        t0, a0  # save argc

	li        a7, 4
	la        a0, there_are
	ecall

	mv        a0, t0
	li        a7, 1   # print int
	ecall

	li        a7, 4
	la        a0, arguments
	ecall

	li        t1, 0   # i = 0
	j         arg_loop_test

arg_loop:
	li        a7, 4
	lw        a0, 0(a1)
	ecall

	li        a7, 11
	li        a0, 10    # '\n'
	ecall

	addi      t1, t1, 1   # i++
	addi      a1, a1, 4    # argv++ ie a1 = &argv[i]
arg_loop_test:
	blt       t1, t0, arg_loop  # while (i < argc)

	li        a7, 10
	ecall








So we need to change the mv, the li's, the j, and the la.


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

	
# RARS .data (like MARS) always starts at 0x10010000, whether pseudoinstructions
# are on or not.

.data

there_are:  .asciz "There are "
arguments:  .asciz " command line arguments:\n"

.text

.globl main
main:
	or        t0, x0, a0  # save argc

	ori       a7, x0, 4

	#la        a0, there_are
	lui       a0, 0x10010    # there_are is at beginning of data so just lui, lower is 0
	ecall

	or        a0, x0, t0
	ori       a7, x0, 1   # print int
	ecall

	ori       a7, x0, 4
	lui       a0, 0x10010
	ori       a0, a0, 11   # 11 is length in bytes of "There are " 10 chars + '\0'
	#la        a0, arguments
	ecall

	ori       t1, x0, 0   # i = 0
	#j         arg_loop_test
	jal       x0, arg_loop_test

arg_loop:
	ori       a7, x0, 4     # print string for argv[i]
	lw        a0, 0(a1)
	ecall

	ori       a7, x0, 11
	ori       a0, x0, 10    # '\n'
	ecall

	addi      t1, t1, 1    # i++
	addi      a1, a1, 4    # argv++ ie a1 = &argv[i]
arg_loop_test:
	blt       t1, t0, arg_loop  # while (i < argc)

	ori       a7, x0, 10
	ecall








Following the table, you can see the mv became or, the li became
ori, the j became jal with x0 as the destination register,
and lastly the la became lui plus an ori if necessary for the byte offset.



Exercises

          You can support the book and purchase the chapter exercise solutions
from my store or
Leanpub.



	
Convert the exercises from chapter 5 to run with no pseudoinstructions (java -jar ~/rars_latest.jar np file.s on the command line).


	
Convert the following C code to RISC-V using a jump table (Note in C/C++
enum values start at 0 and go up by one unless the user manually assigns a value, in
which case it continues counting up from there).

        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

	enum { STATE0, STATE1, STATE2, STATE3, STATE14 = 14, STATE42 = 42, STATE43, STATE44 };


int main()
{
	int num;
	do {
		printf("Enter a number between 0 and 50: ");
		scanf("%d", &num);
	} while (num < 0 || num > 50);

	switch (num) {
	case STATE0:
		puts("Zilch");
		break;
	case STATE1:
		puts("Uno");
		break;
	case STATE2:
		puts("Dos");
		break;
	case STATE3:
		puts("Tres");
		break;
	case STATE14:
		puts("Catorce");
	case STATE42:
		puts("The answer to life, the universe, and everything.");
	case STATE43:
		puts("Off by one");
	case STATE44:
		puts("4 * 11?");
		break;
	}

	puts("Thanks for playing!");


	return 0;
}


















When I find the post I read years ago about how using tabs saves CO2 I’ll put it here, but I’m joking.  I use tabs because it makes sense and there are accessibility reasons too: https://www.reddit.com/r/javascript/comments/c8drjo/nobody_talks_about_the_real_reason_to_use_tabs/



https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html









Appendix A: Venus


        Venus is the simulator that is used by UC Berkeley’s CS 61C course.
It’s nowhere near as nice nor as full featured as RARS and currently seems poorly
documented and maintained.

UC Berkeley is the designer of RISC-V and so was one of the first colleges
to start teaching RISC-V, years before RARS existed. Given that they’ve built up
a curriculum around Venus and invested at least a little in their own fork
it makes sense that they’d be hesitant to switch.

In any case, this appendix will go over the most important differences
between Venus and RARS.


Versions and History

          Unlike RARS which seems to have one primary and fairly well maintained stable version, and
a few even more updated forks, Venus is less clear.
As far as I can tell it was started by kvakil 5 years ago,
was forked by ThaumicMekanism, and finally was forked
by Berkeley for their cs61c course.  While the latter has
the most recent commit none of them are what I would call well maintained, with the former 2
seeming to stall in 2018 and 2020 respectively.  Venus (all versions) has a web based interface
but I don’t know why anyone would prefer that to the standalone JAR version.

As of the end of 2022 you can get Venus jar files from ThaumicMekanism’s
github
here
or from Berkeley’s course website
here.

I don’t know what the minor differences are between them but you should
use whatever is provided by the course if you’re taking it.



Data section

          The documentation is sorely lacking and out of date but the most relevant
differences from RARS are that it uses .asciiz instead of .asciz and
while .float and .double are reserved, Venus doesn’t actually support
floating point instructions so you can’t actually do anything with them.

The only documentation I can find is from ThaumicMekanism’s wiki
and it doesn’t mention .space even though Venus seems to
allow it.[14]  CS61C’s documentation doesn’t mention data
directives at all.[15]



Environment Calls

          Venus only supports a handful of ecalls and they work differently than they do in
RARS.  Again, the only documentation I can find is ThaumicMekanism’s.[16]

There is one that I know of that is not listed in that table.  Ecall 5 is basically
the C function atoi which converts a string to an integer.  It takes the address
of the string in a1 and returns the number in a0.  If there is any leading or trailing
whitespace or the string isn’t a valid number it returns 0.

One thing you might have noticed is that Venus doesn’t support any of the input ecalls.
This is extremely limiting since you can’t write any interactive programs and to test
a function you have to actually change the program (usually a variable in the data section)
and re-run it.  The only way to even get variable program behavior is to use the file input
capability to read data and do something different based on that input.

But aside from the lack of some basic ecalls, there’s also a behavioral difference in
how they work.  In RARS, you use a7 to select the ecall leaving the lower a
registers for arguments which matches how you would pass arguments to a function.
Venus uses a0 to select the ecall which means your argument(s) start in a1.
This is probably why they provide wrapper functions for the ecalls to students
for their projects, though it took until recently to get them right.

So, what does this look like in practice?  Let’s take the simple command line argument
program from chapter 7 and convert it for Venus.  So the following program:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

	.data

there_are:  .asciz "There are "
arguments:  .asciz " command line arguments:\n"

.text
main:
	mv        t0, a0  # save argc

	li        a7, 4
	la        a0, there_are
	ecall

	mv        a0, t0
	li        a7, 1   # print int
	ecall

	li        a7, 4
	la        a0, arguments
	ecall

	li        t1, 0   # i = 0
	j         arg_loop_test

arg_loop:
	li        a7, 4
	lw        a0, 0(a1)
	ecall

	li        a7, 11
	li        a0, 10    # '\n'
	ecall

	addi      t1, t1, 1   # i++
	addi      a1, a1, 4    # argv++ ie a1 = &argv[i]
arg_loop_test:
	blt       t1, t0, arg_loop  # while (i < argc)

	li        a7, 10
	ecall








becomes


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	.data

there_are:  .asciiz "There are "
arguments:  .asciiz " command line arguments:\n"


.text

main:
	mv      t0, a0  # save argc
	mv      t2, a1  # save argv

	li      a0, 4           # print str
	la      a1, there_are
	ecall

	mv      a1, t0
	li      a0, 1   # print int
	ecall

	li      a0, 4
	la      a1, arguments
	ecall

	li      t1, 0   # i = 0
	j       arg_loop_test

arg_loop:
	li      a0, 4
	lw      a1, 0(t2)
	ecall

	li      a0, 11
	li      a1, 10    # '\n'
	ecall

	addi    t1, t1, 1   # i++
	addi    t2, t2, 4    # argv++ ie t2 = &argv[i]
arg_loop_test:
	blt     t1, t0, arg_loop  # while (i < argc)


	li      a0, 10
	ecall








Note that we had to save argv beacuse a1 is now used in our ecalls.  In addition
the behavior is different than RARS:


        $ java -jar ~/venus-jvm-latest.jar args_venus.s
There are 0 command line arguments:
$ java -jar ~/venus-jvm-latest.jar args_venus.s hello
There are 2 command line arguments:
args_venus.s
hello


RARS may have decided not to include the program name/"executable" in its arguments
but at least it is consistent in its behavior. In addition, the section
on passing arguments in CS 61C’s documentation is inaccurate as of December 2022.  Just
like with C and RARS, argc comes first in a0 then argv in a1, not
the other way around as described.[17]



Constants

          Another minor difference from RARS is how you declare constants.  In Venus you use
the same syntax as C, so the constants example from chapter 7:


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	.eqv sys_print_str 4
.eqv sys_exit 10

.data
hello:   .asciz "Hello World!\n"

.text
main:
	li   a7, sys_print_str
	la   a0, hello  # load address of string to print into a0
	ecall

	li   a7, sys_exit
	ecall








becomes


        	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	#define sys_print_str 4
#define sys_exit 10

.data
hello:   .asciiz "Hello World!\n"

.text
main:
	li   a0, sys_print_str
	la   a1, hello  # load address of string to print into a1
	ecall

	li   a0, sys_exit
	ecall










Conclusion

          While most of this book applies equally well to both programs (other
than chapter 6 of course) and to RISC-V in general,
this appendix should clear up any difficulties you might have run into trying to convert
the examples to run in Venus.  Hopefully Berkeley will decide to switch to RARS eventually.





https://github.com/ThaumicMekanism/venus/wiki/Assembler-Directives



https://inst.eecs.berkeley.edu/~cs61c/su21/resources/venus-reference/



Funny enough the Wiki link on cs61c’s Venus is empty and their own documentation, entirely focused on the web version, links to ThaumicMekanism’s wiki



https://inst.eecs.berkeley.edu/~cs61c/su21/resources/venus-reference/









References and Useful Links


        

	
Greensheet


	
Alternative info sheet


	
RARS ecall list


	
RISC-V calling convention










Supporters


        
Corporate

          









	RISC-V Assembly Programming


	Robert Winkler


	supporter3












Platinum

          









	supporter4


	supporter5


	PortableGL





	supporter7


	 


	 













Gold

          









	sdl_img


	supporter9


	supporter10





	supporter11


	supporter12


	supporter13












Silver

          









	supporter14


	supporter15


	supporter16





	supporter17


	supporter18


	supporter19





	supporter20


	 


	 













Bronze

          









	CCSF cs student 0x01


	Sudarshan S Chawathe


	supporter23





	supporter24


	supporter25


	supporter26





	supporter27


	supporter28


	supporter29





	supporter30


	 


	 


















EPUB/images/gravatar_250.png




EPUB/jacket/front-cover.png



EPUB/images/enable_rars_args.png


EPUB/nav.xhtml



Table of Contents





		Info


		Dedication


		Chapter 0: Hello World

		Prereqs


		System Setup


		Handy Resources


		Hello World


		Building and Running


		Conclusion


		Exercises








		Chapter 1: Data

		Arrays


		Exercises








		Chapter 2: Environment Calls

		Examples


		Exercises








		Chapter 3: Branches and Logic

		Practice


		Conclusion


		Exercises








		Chapter 4: Loops

		Looping Through Arrays


		Conclusion


		Exercises








		Chapter 5: Functions and the RISC-V Calling Convention

		Functions


		The Convention


		Conclusion


		Exercises








		Chapter 6: Floating Point Types

		Floating Point Registers and Instructions


		Practice


		Getting Floating Point Literals


		Branching


		Functions


		Conclusion


		Exercises








		Chapter 7: Tips and Tricks

		Formatting


		Misc. General Tips


		Constants


		Macros


		Switch-Case Statements


		Command Line Arguments


		No Pseudoinstructions Allowed


		Exercises








		Appendix A: Venus

		Versions and History


		Data section


		Environment Calls


		Constants


		Conclusion








		References and Useful Links


		Supporters

		Corporate















		Front Cover


		Table of Contents


		Start of Content













EPUB/images/rars_args.png


EPUB/images/riscv_book.png







